Cuando hablamos de Big Data nos referimos a conjuntos de datos o combinaciones de conjuntos de datos cuyo tamaño (volumen), complejidad (variabilidad) y velocidad de crecimiento (velocidad) dificultan su captura, gestión, procesamiento o análisis mediante tecnologías y herramientas convencionales, tales como bases de datos relacionales y estadísticas convencionales o paquetes de visualización, dentro del tiempo necesario para que sean útiles.
La naturaleza compleja del Big Data se debe principalmente a la naturaleza no estructurada de gran parte de los datos generados por las tecnologías modernas, como los web logs, la identificación por radiofrecuencia (RFID), los sensores incorporados en dispositivos, la maquinaria, los vehículos, las búsquedas en Internet, las redes sociales como Facebook, computadoras portátiles, teléfonos inteligentes y otros teléfonos móviles, dispositivos GPS y registros de centros de llamadas.
Lo que hace que Big Data sea tan útil para muchas empresas es el hecho de que proporciona respuestas a muchas preguntas que las empresas ni siquiera sabían que tenían. En otras palabras, proporciona un punto de referencia. Con una cantidad tan grande de información, los datos pueden ser moldeados o probados de cualquier manera que la empresa considere adecuada. Al hacerlo, las organizaciones son capaces de identificar los problemas de una forma más comprensible.
El Big Data le aporta nuevas perspectivas que abren paso a nuevas oportunidades y modelos de negocio. Iniciarse en ello requiere de tres acciones clave:
1. Integre: Durante la integración, es necesario incorporar los datos, procesarlos y asegurarse de que estén formateados y disponibles de tal forma que los analistas empresariales puedan empezar a utilizarlos
2. Administrar: El Big Data requiere almacenamiento. Su solución de almacenamiento puede residir en la nube, en las instalaciones o en ambos, muchas personas eligen su solución de almacenamiento en función de dónde residan sus datos en cada momento.
3. Analizar: La inversión en Big Data se rentabiliza en cuanto se analizan y utilizan los datos. Adquiera una nueva claridad con un análisis visual de sus diversos conjuntos de datos. Continúe explorando los datos para realizar nuevos descubrimientos. Comparta sus hallazgos con otras personas. Construya modelos de datos con aprendizaje autónomo e inteligencia artificial. Ponga sus datos en funcionamiento.
Comments